ar X iv : m at h / 99 10 08 9 v 1 [ m at h . SP ] 1 8 O ct 1 99 9 ON LOCAL BORG - MARCHENKO UNIQUENESS RESULTS
نویسندگان
چکیده
We provide a new short proof of the following fact, first proved by one of us in 1998: If two Weyl-Titchmarsh m-functions, m j (z), of two Schrödinger operators H j = − d 2 dx 2 + q j , j = 1, 2 in L 2 ((0, R)), 0 < R ≤ ∞, are exponentially close, that is, |m 1 (z) − m 2 (z)| = |z|→∞ O(e −2 Im(z 1/2)a), 0 < a < R, then q 1 = q 2 a.e. on [0, a]. The result applies to any boundary conditions at x = 0 and x = R and should be considered a local version of the celebrated Borg-Marchenko uniqueness result (which is quickly recovered as a corollary to our proof). Moreover, we extend the local uniqueness result to matrix-valued Schrödinger operators.
منابع مشابه
ar X iv : h ep - p h / 99 10 24 8 v 1 6 O ct 1 99 9 1 Effect of σ ( 600 ) - Production in pp̄ → 3 π 0 at rest
متن کامل
ar X iv : m at h / 99 07 08 5 v 1 [ m at h . G R ] 1 3 Ju l 1 99 9 LOOPS AND SEMIDIRECT PRODUCTS
متن کامل
ar X iv : m at h / 99 07 08 5 v 2 [ m at h . G R ] 1 7 D ec 1 99 9 LOOPS AND SEMIDIRECT PRODUCTS
متن کامل
ar X iv : m at h / 98 10 17 2 v 1 [ m at h . D G ] 2 9 O ct 1 99 8 VOLUME OF RIEMANNIAN MANIFOLDS , GEOMETRIC INEQUALITIES , AND HOMOTOPY THEORY
We outline the current state of knowledge regarding geometric inequalities of systolic type, and prove new results, including systolic freedom in dimension 4.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000